UCSF School of Medicine
Presents
The 9th Annual
2009 Curriculum Ambassador Showcase

Monday, September 14th
Golden Gate Room
Millberry Union
Curriculum Ambassador Leadership Team

Program Oversight
Tracy Fulton, PhD, Director
Dean Helen Loeser, MD, MSc, Associate Director
David Rachleff, Program Coordinator

Educational Technology
Chandler Mayfield, Team Leader
Christian Burke
Joe Crawford, Evaluations
Jesse Friedman
Valentina Bettencourt

Educational Research, Scholarship & Evaluation
Patricia O’Sullivan, EdD, Team Leader
Bridget O’Brien, PhD
Christy Boscardin, PhD

Educational Informatics
Josephine Tan
UCSF Library

Cross Block Project Advisors
Christian Burke, Curricular Mapping
Katherine Hyland, PhD, Curricular Mapping
Susan Masters, PhD, Competency-Based Assessment
Patty Robertson, MD, Portfolio System
Chandler Mayfield, Portfolio System

2009 Curriculum Ambassador Projects

The Summer Curriculum Ambassador program provides support and mentoring for students to pursue a curriculum project of their choosing. Students partner with course faculty to develop particular areas in the Essential Core—from small group sessions to longitudinal theme development to online modules. Students also work on team projects to enhance cross-block integration and consistency.

Project

Down Syndrome ILM (p. 4)

Integrated Self-Assessments for Prologue (p. 7)

Cellular-level Physiology of the Gastrointestinal Tract (p. 9)

Longitudinal Leadership Curriculum for PRIME-US (p. 12)

Major Organ Systems Pathology Resource (online module) (p. 14)

Microbiology Laboratory Technique Videos (p. 15)

Multimedia Additions to Essential Core Small Group Case Studies (p. 17)

Musculoskeletal Curriculum Mapping (Prologue) (p. 19)

Nutrition Curriculum Interactive Roadmap (p. 21)

Peer Facilitated M&N Small Groups (p. 23)

Portfolio Development (p.25)

Promoting Interprofessional Education at UCSF: Longitudinal Group Experience (p. 27)

Radiology Curriculum Mapping (p. 30)

Translational Research, Module Development (p. 32)

UC Hastings Consortium Project (p. 34)

Ambassador(s)

- Caroline Becerra
- Eugene Fan & Tyrone Chan
- Jessica Ansari
- Angela Echiverri & Neal Sheran
- Sara Epstein & Claire Lande
- Tirah Samura
- Anne Kern & Laurent Menut
- Thomas Bullock
- Misha Amoils
- Laura Byrne & Matthew Schechter
- Nick Brandehoff
- Jennifer Staves
- Lindsay Borg & Max Thompson
- Nili Sommovilla
- Ed Dietrich & Ben Howell
Down Syndrome Module for Life Cycle

Project Overview
In Life Cycle, students have the opportunity to learn about a variety of genetic abnormalities and their clinical manifestations, including Down syndrome. Down syndrome is the most common genetic cause of mental retardation, and presents with a range of abnormalities. Throughout the course, various aspects of Down syndrome are discussed briefly under the umbrella of other topics. Life Cycle includes a patient presentation to offer students insight and a different perspective of the syndrome. A concise clinical picture of Down syndrome, however, was missing. My project aimed to produce a cohesive description of this common medical condition in the form of a module that would be beneficial for students.

The Down syndrome module consists of two parts: 1) a 10-12 page section that would be included in the syllabus 2) a web-based narrative that tells the personal experiences of a young girl with Down syndrome using previously recorded videos.

The written portion provides the information on Down syndrome that all 2nd year medical students should master, including: clinical presentation, common physical and developmental challenges, genetics, social challenges. Various lectures given throughout Life Cycle were referenced and tied into this section. In addition to working with Dr. Masters, I collaborated with Dr. Kathy Hyland (for the genetics portion), Dr. Andi Marmor (for the clinical and pediatrics portion), and Dr. Clarissa Kripke (for the clinical information for adults).

The web-enhanced portion of the module shows the experience of a young girl with Down syndrome using videos, pictures, and text. In past years, a Bay Area family has participated in presenting to medical students at UCSF by talking to students and showing videos of their young daughter who has Down syndrome. Andrea Zanko, a UCSF genetics counselor, helped me get in touch with the family. I edited the videos to show clips that would demonstrate some of the challenges the young girl faces, in addition to her many abilities. The website also offers various resources students can explore for additional information. Throughout the summer, I received feedback from faculty and the curriculum ambassador group that helped me make improvements to the project.

Methods
1) In order to organize my time, I first created a timeline with a list of goals and items I would complete each week. I returned to the timeline at various times throughout the summer and re-evaluated the priorities I had set in the beginning. I attended the
curriculum ambassador workshops during the first week of the summer program. In one of the sessions I learned to storyboard the web site and was able to create a visual draft of what the site would look like. Because the information was to cover the life span of a patient with Down syndrome, I decided an interactive timeline would be the best way to present it. My literature search yielded numerous resources on Down syndrome, and I also used input from faculty to help me identify the ones that would be the most useful for my project. I scheduled meetings with each of the faculty that I needed to consult for the different sections of the syllabus.

2) I began reviewing the resources I had identified, along with the various Life Cycle lectures that covered portions of Down syndrome including: Clinical Cytogenetics, Reproductive Genetics, and Mental Retardation. This helped me identify material that I could reference and would not need to repeat when writing the syllabus section. I consulted with Chris Burke about the software I would need for creating the website. We also decided the website could be hosted on the CLE. I began the training sessions on Lynda.com for Dreamweaver CS3 and Photoshop.

3) I wrote the first draft of the syllabus section and sent it to Dr. Marmor for input. I reviewed the videos from the family for the website portion, and identified the clips and photos I wanted to use. I encountered my first set-back when trying to create the template for the website. I ended up needing to revise what I had envisioned for the website, which was to have some moving components to the timeline. The process became too time consuming, and I decided to simplify the format. I met with Dr. Masters to review the template.

4) I uploaded the website files to the CLE, and began incorporating Dr. Marmor’s edits to the written draft. I also met with Dr. Kripke to identify additional resources for the section on adults and Down syndrome. I incorporated the new information to the appropriate sections of the syllabus section and the website.

Skills
- Literature searching
- Web design and illustration
- Project management

Resources
- Dreamweaver CS3
- Photoshop CS4
- Lynda.com
Project Outcomes

• I created a module that consists of a written syllabus section and a website hosted on the CLE to be used as part of Life Cycle.
• I plan to add a practice quiz that students can use to review the clinical information.
• I plan to include an evaluation on the website in order to collect additional feedback from students who use the module.
• In addition, the website may be useful for students in clerkships who may encounter patients with Down syndrome. The website format also allows additional resources to be added as needed.
Integrated Self-Assessment For The Prologue Midterm

Purpose
The goal of our project was to create an interactive online self-assessment for the Prologue midterm that integrates basic science knowledge, Foundations of Patient Care (FPC), and UCSF Medical School Competencies as they relate to a medical history from a clinical scenario.

Background
Self-assessments are an important component of the online curriculum, especially in Prologue/FPC where students need clarification as to what is expected of them. Currently all online self-assessments are discipline-based and exclusively focused on knowledge acquisition. While these are an effective means of reviewing the material for that discipline, the clearly demarcated scope of questions fails to elicit a more holistic understanding of the material or of how it relates to clinical practice. Common concerns in the course evaluations from students included the sense of fragmentation during the Prologue block and the lack of integration between Prologue and FPC material. Our new integrated self-assessment addresses these concerns by allowing students to appreciate how the basic science knowledge learned during Prologue relates to disease processes and patient care.

Methods
We decided early on to frame our self-assessment around a patient history. This will emphasize the clinical correlates of Prologue material while providing an introduction to the structure and content of medical histories, which students will have learned in FPC. We decided to structure our module such that the chart would be shown on one side, while questions relating to the chart would appear on the other with the corresponding chart section highlighted.

For the first two weeks, we surveyed the Prologue syllabus and tried to devise a case that would encompass the various disciplines in a coherent fashion. This proved to be our biggest challenge. We were ultimately successful in drafting a case for the Prologue midterm. We had originally anticipated making a self-assessment for both the Prologue midterm and the final, but decided, due to time constraints, to simply focus on developing a higher-quality self-assessment for the midterm rather than attempt to create both.

In the following weeks, we drafted the self-assessment questions, making sure to adequately cover all disciplines as well as several competencies. To verify that our
questions were accurate, appropriate, and well-written, we continually made revisions using the helpful feedback from faculty including Marieke Kruidering-Hall, Doug Schmucker, Tracy Fulton, Dana Rohde, and Karen Hauer. Additionally, we continued to revise the patient history to make it more clinically accurate and realistic, with the help of Carrie Chen.

After research and consultation with UCSF technology staff, we decided that Articulate Quizmaker was the most appropriate computer program for realizing our vision. Questions, answers, and explanations were imported into Quizmaker and designed in such a way that was visually appealing and easy to navigate. Extensive editing was continued during this process, and we were ultimately successful in delivering a final, polished product ready for the UCSF-CLE.

Evaluation Plan
Following completion of the module on the UCSF-CLE, students will be asked to complete a survey. In addition to the standard questions, we have written questions that are specific to our self-assessment. Responses are assessed on a five-level Likert scale. Students will also have an opportunity to give feedback in free-response form. Data will be collected by the UCSF technology staff and analyzed for possible future iterations of the module. Positive feedback may encourage the production of similar integrated self-assessments for other exams.

Dissemination
The module is posted on iRocket on the UCSF-CLE for students to complete before their midterm. A Word document containing the patient history and all the questions and answers is also available for review. Additional documents containing questions and answers from each discipline (Anatomy, Biochemistry, FPC, Genetics, Histology, Pharmacology) are uploaded for students who would prefer to concentrate on certain areas separately. A page in the Prologue Syllabus has been dedicated to self-assessments on the CLE. It includes an excellent description of our module and encourages its use before the midterm. Lecturers will also promote our module during Prologue. We may revise our module in order to tailor it to 2nd year students as part of Epilogue. We plan to publish our module on MedEdPORTAL.

Reflective Critique
Feedback was exchanged through frequent email correspondence with our advisors, as well as intensive weekly meetings in person. Faculty and advisers also provided comments on our UCSF Portfolio pages. Prologue faculty for the various disciplines intensively reviewed questions, answers, and explanations. Two large group presentations also generated excellent feedback. While producing the module, we paid especially close attention to comments from fellow curriculum ambassadors in order to address possible concerns of students and facilitate easy navigation.
Cellular-level Physiology of the Gastrointestinal Tract
12 interactive, online modules

Project Overview:
In the Metabolism and Nutrition (M&N) block of the MS1 curriculum, students encounter an enormous amount of complex gastrointestinal (GI) physiology. While numerous resources exist as learning aids to get students through the organ systems-level physiology (the macroscopic), there are few resources to aid them in understanding the complex cellular physiology of the GI tract. However, an understanding of cellular-level functioning is essential to grasping not only physiology, but also pharmacology and pathophysiology.

The purpose of this project was to create an easy to use, easy to access resource to guide MS1s through the cellular-level physiology of the GI tract. The resource takes the form of 12 online “cell” modules with colorful, clear graphics and animations, audio, and text. These modules contain interactive self-assessment components and are designed to be “bite-sized”, with no individual module requiring more than approximately ten minutes to complete. However, they encourage a level of understanding that fosters a “big-picture” conceptualization of human physiology.

These modules will be integrated into the curriculum as:
• **Required small group preparation** for this year’s MS-1s: There will be 2 new, student-run small groups during the M&N block. Students will be required to complete these GI physiology modules as an assignment prior to the small group to ensure a shared, fundamental level of understanding of the physiology.
• **Epilogue material for MS-2s**: These modules will be “piloted” by the current MS-2s during the GI portion of their Epilogue series.
• **Easy to access review material**: part of the benefit of this resource will be easy access on the CLE and simple navigability that allows students to quickly review, for example, parietal cell function when studying the adverse effects of NSAIDs during I-3.

The final project contains 12 modules that encompass the cells of gastric and pancreatic physiology. Over the next months, I will work closely with my advisor, Dr. Igor Mitrovic, whose support and wealth of knowledge have made this project possible, to complete a final round of editing before the modules will be sent to several faculty and student alpha-testers for feedback. By M&N and Epilogue in 2010, UCSF’s MS-1s and MS-2s will be using these polished modules as an established part of the UCSF curriculum.
Methods

1) Research: I began with multifaceted research to accomplish 2 goals:
 - Establish need for the project: I read student evaluations from the M&N block, looked at M&N student exam performance data, and researched the depth of physiology content tested on the Step 1 Boards. I also performed a comprehensive search of the UCSF as well as the national MedEdPortal databases to see if any resources like the one I proposed were in existence. I found a distressing level of student dissatisfaction with the GI physiology curriculum. I also found an abundance of macroscopic, organs-level physiology resources, but nothing to address the cellular level that students find so difficult.
 - Research effective teaching methods and formats: I performed a PubMed search on physiology teaching methods and found several findings that bite-sized, interactive, and visual modules that foster understanding of concepts rather than memorization of terms facilitated better long-term recall in students than any other methods. I also gathered peer feedback on resources they had found helpful and tried to incorporate qualities of all “successful” modules into my project. (These included: short modules, interactive components, colorful but simple graphics and animations, and self-assessment quizzes following each short module).

2) Content: Next, I performed the medical physiology research necessary for my project, utilizing the UCSF curriculum as well as several physiology textbooks, and I created mock modules and quizzes for each cell, meeting with my advisor for feedback on accuracy and depth of content. I also worked closely with the Curriculum Ambassadors creating GI physiology small group problem sets to integrate my project as an assignment to complement theirs.

3) Technology/Module Creation: Finally, I spent the majority of my summer creating my modules one-by-one in Flash format using the Articulate program. I also wrote and edited interactive self-assessments for each module, then recorded MP3 audio files to synch to each module.

Skills & Resources

- Time and resource management
- Comprehensive database searching
- Flash-based web design, illustration, and animation
- Condensing complex information into simple visuals and text
- Multiple-choice and assessment question generation
- Articulate Studio ’09: Flash-content generating software that works with Powerpoint files
- Boron and Boulpaep Medical Physiology textbook
- Dr. Igor Mitrovic, and his extensive expertise in physiology and teaching medical students
Project Outcomes

Ultimately, I have created 12 online gastrointestinal “Cell” modules that target the learning styles of visual, auditory, and kinesthetic learners with their simple graphics and animations, audio, and interactive self-assessment components. These modules will be integrated into the curriculum as required assignments for MS-1s. Over the next months, I will gather faculty and student alpha-tester feedback to polish the modules before their formal appearance in M&N in 2010.
The Development of a Longitudinal Leadership Curriculum for the Program in Medical Education for the Urban Underserved (PRIME-US)

Project Overview
Endowing medical students with physician leadership skills is one of the main goals of UCSF’s Program in Medical Education for the Urban Underserved (PRIME-US), a program designed to support medical students interested in working with underserved populations. Two of the main goals of PRIME-US are to: (1) provide students with the skills and support necessary to aid them in working with underserved populations, and (2) create leaders in the field of urban underserved health care. In completing this project, we hope to enhance the current PRIME curriculum by addressing the main goals of PRIME-US.

The goal of this summer ambassadorship was to help with the creation of a longitudinal leadership curriculum for PRIME-US. This project aimed to produce a curricular overview of physician leadership objectives. We accomplished this by creating an online survey of 68 physician leadership objectives, which was disseminated to PRIME-US program students, faculty and staff to rate the relevance of these objectives. We also completed interviews with community experts who connected us with current leadership programs and resources to help PRIME-US meet its physician leadership needs. The results from the survey and interviews informed a curricular overview of physician leadership specific to the needs of PRIME-US program participants.

Methods
A literature review was performed, and a comprehensive list of 171 existing physician leadership objectives, organized into 15 themes, was compiled from four pertinent journal articles. Objectives that were not relevant to PRIME-US, beyond the scope of medical education, or redundant were excluded to create an abridged list of 63 potential physician leadership objectives. Five additional physician leadership objectives, not present in the original list, but deemed necessary by the authors, were included, for a total list of 68 objectives. An online survey designed to rank these objectives was then created and disseminated to 117 individuals associated with PRIME-US (80 faculty and staff, and 37 PRIME students). Interviews were also conducted with representatives from several leadership programs from UCSF and UC Berkeley to examine the general design and content of leadership programming available for students within the health sciences.
Resources:
Our two main resources utilized for this project included: (1) existing literature on physician leadership and (2) community experts in the field of health leadership. We met with representatives from the Pediatric Leadership in the UnderServed (PLUS) program at UCSF-SFGH, UC Berkeley Center for Health Leadership, UCSF Office of Student Life, and the UCSF Center for Gender Equity. This provided us with opportunities to extend the network and resources available to PRIME-US, while learning about leadership programming from these community experts.

Project Outcomes
Forty-eight individuals completed the survey, with a corresponding survey response rate of 41%. Data analysis involved using a content validity index to determine the relevance of objectives towards the development of longitudinal leadership curriculum for medical students in PRIME-US. A Likert scale with ratings from 1 (not relevant) to 4 (very relevant) was employed, with relevance defined as a rating of 3 or 4. A cutoff of 80% rater agreement on relevance of objectives was used, which condensed the list from 68 to 22 objectives. The final list of objectives corresponded to the following leadership competencies and themes: visionary leadership, sense of mission, self-management, political processes, advocacy, ethics and power, and the facilitation of team and workgroup development. Interviews conducted with community experts in the leadership field expanded access to program materials and existing workshops for the PRIME-US program to meet the needs of several of the relevant leadership objectives.

Conclusions
Overall, the results of the survey and interviews will inform the design of a new leadership curriculum to provide PRIME-US medical students with tangible leadership skills focused on addressing the health needs of underserved communities.
Major Organ Systems Pathology Resource

Purpose
To develop ten interactive online modules were developed to accompany each histopathology laboratory in the UCSF School of Medicine’s “Major Organs Systems” course.

Background
Given the success of existing online pathology resources available in other courses and data supporting the utility of interactive online learning, it was postulated that these modules would be a useful resource for medical students.

Methods
After reviewing existing resources and course objectives, images were collected, text content developed, and interactive platform (using iWork’s Keynote software) for ten interactive online modules were created.

Evaluation Plan
Student satisfaction and academic performance will be assessed through an online evaluation tool and comparing exam scores, respectively, following the completion of the Major Organs Systems course in 2010.

Dissemination
Interactive modules will be made available to first-year medical students enrolled in the Major Organs Systems course through the Collaborative Learning Environment (CLE) platform. Second, third and fourth year students will have access through a separate portal on the CLE.

Reflective Critique
Improvement of exam scores in pathology will provide quantitative data about the efficacy of the resource. Additionally, user ratings will be used to tailor content for what most students use the resource (e.g., lab prep, exam prep, lecture prep). Open-ended feedback will also be incorporated to make changes to the modules in the future.
Tirah Samura, MS2
Faculty Advisor: Shirley Lowe

Microbiology Lab Demonstration Videos

Project overview
U.C.S.F. medical, dental, and pharmacy students need a strong foundation in the microbiology lab to support their future clinical understanding of infectious disease. Even though the majority of students will not work in a clinical microbiology lab it is important that they learn the basics about the tests that such a lab runs, in order to better understand the results of future tests they may order. Each school has a microbiology curriculum specific to their degree program, but many of the basic tests are performed by students of all the schools. The microbiology portion of the curriculum is packed into just a few weeks, meaning that students have multiple labs each week. In each lab students are given an unknown microbe to be identified using the tests explained in their lab syllabus.

There has been some complaint from former students that there is not enough time in the laboratory to cover all of the necessary tests. The faculty have also noted that many of the students are not learning proper lab technique by the end of the course. My project aims at addressing these complaints by creating short videos that the students can watch before their lab sessions. The videos demonstrate the basic techniques needed to run the different tests and they provide brief descriptions of the test’s applications and necessity. My original goal was to create eleven videos that addressed the major concepts for each school. At the midpoint review I had to revise and decrease the number of videos I would ultimately create. I was unable to make all of the videos because I found the filming and editing process to be much more time consuming than I had originally envisioned.

I was able to get feedback on my videos from multiple people. Shirley Lowe, my advisor and course director for all the microbiology blocks, reviewed the videos for their educational and factual content. Christian Burke provided me feedback on the cinematic qualities and audio components. Vicky Pon, a student in the pharmacy school, not only collaborated with me on the project but gave me the student perspective feedback along with my fellow curriculum ambassadors.

Methods
1) I began my project by reviewing the I3 course report from the previous year to find out more precisely what the student complaints pertaining to the microbiology laboratory were. The course report revealed that the students were unable to see the demonstrations done in the laboratory because of a lack
of space. The students also stated that there was not enough time in the lab to perform all the tests they needed to.

2) I then worked with Shirley Lowe to identify the laboratory tests that were being performed by all the schools. Shirley was also able to identify the tests that students typically had the most trouble with. This is how we decided upon the original number of eleven videos.

3) Next I did a literature search to find out how others have used educational videos. I found that the most effective videos were supplemental to the course, while not being a reiteration of provided materials.

4) Finally I used skills learned in the first week of the curriculum ambassador program to turn the text I wrote for each video into storyboards that would aid me during filming.

Skills and Resources
1) Video filming and editing
2) Story boarding- I was instructed in this technique during the first week of the curriculum ambassador program, and found it to be a useful technique.
3) Lynda.com- This is a resource that I used to learn the ins and outs of Imovie. It was so helpful to have this instructional software available to me.
4) Imovie and Audacity- Both of these programs are pretty intuitive, and user friendly.
5) The CIT lab and Staff- The CIT lab at UCSF has a wealth of equipment and personnel resources that I would not have been able to complete this project without.

Project Outcomes
My final product is seven videos covering multiple lab techniques and testing results. These videos are posted on the CLE on the page entitled, Micro Lab Videos. Course director Shirley Lowe will be announcing the presence of the videos to the entire class in the lectures preceding the laboratory sessions. There will also be links to the Micro Lab Video page from the student’s CLE calenders. These two methods are to ensure use of the videos by the students.

I am assessing the videos through two different evaluations. First there will a question on the E-value questionnaire for the entire course. This question will be aimed at addressing the general use of the videos. Second I have included a questionnaire at the bottom of the CLE page. This questionnaire has more qualitative questions about how useful the students feel the videos are. Through these two evaluations I hope to assess whether or not the students feel the videos increase their understanding in the microbiology lab.
Multimedia Enhancements to Cardiovascular Small Groups

Purpose
We created videos of patient interviews and physical exams to accompany two paper-based cases currently used in the cardiovascular block at UCSF. The short movies will be shown as introductions to the cases before the classroom sessions, and students will be expected to collect pertinent patient information in standard H&P format. In addition to enhancing the selected cases, our project bridges the Essential Core curriculum with Foundations of Patient Care and Preceptorships in the preclinical years.

Background
The current UCSF curriculum utilizes paper cases in small group sessions to teach medical knowledge as well as clinical decision-making skills. While these sessions succeed at creating an interactive learning environment not found in lecture, they still fall short of real-life patient encounters. By supplementing the one-dimensional paper cases with audio-visual material, we hope to bring the paper cases “to life” and thus enhance their memorability. Moreover, the use of varied presentation modalities should appeal to a wider array of learning styles. The Danovich case in Prologue highlights how case-based learning can serve as a powerful mnemonic for acquiring medical knowledge. Our videos should provide some of the Danovich dynamism to other blocks. Finally, the physical exam demonstrations link back to FPC and should help reinforce clinical skills during the first year curriculum.

Methods
- In our initial planning we surveyed all the medicine small groups currently in the Organs and Metabolism & Nutrition blocks. With guidance from our advisor we selected two cases for our project: Mr. Jackson and Mr. Harvey.
- Working off the current paper cases, we created thorough outlines of the material presented, questions covered, and session objectives.
- With our outlines completed, we wrote scripts for the patient interviews and edited them per our advisor’s recommendations.
- For the physical exam, we consulted the Bates’ Physical Exam videos as a reference.
- We made detailed storyboards for every aspect of the physical exam and used a dress-rehearsal session to work out last minutes details.
- With help from our advisor we located a suitable location for filming as well as all our props (e.g. gowns, nasal cannula, etc).
- We hired two standardized patients for the cases and enlisted the help of fellow medical students to play our student-doctors.
• The materials on Lynda.com were crucial to learning how to use iMovie in our editing process.
• We used a digital stethoscope and associated Audacity software to record and enhance physical exam findings (e.g. normal lung sounds, aortic stenosis, etc)
• Once completed the videos will be available online for students on the CLE and attached to the small group session material.

Evaluation Plan
We plan on using one of the discretionary E*Value questions for the overall block to survey student satisfaction with the videos. Additionally, we plan to obtain feedback directly from students by running a “focus-group” by visiting select classes and recording their comments.

Dissemination
Our videos will be available online on the CLE and the forthcoming evaluations and feedback will be included in next year’s course report.

Reflective Critique
Our faculty advisor, Dr. Leslie Zimmerman, provided invaluable feedback at every step in our project development. Our weekly meetings covered every aspect of the project from core content questions to logistical planning. Our fellow curriculum ambassadors as well as CA leadership provided critical feedback after our project presentation and helped us refine our final product. Christian Burke helped field our questions relating to effective media creation and delivery. Ryan Brazell and Steven Williams offered superb technical help and recommendations throughout our project. FPC leaders Drs. Calvin Chou and Carrie Chen offered terrific feedback especially with regards to the physical exam footage.
Constructing a Musculoskeletal Roadmap: Mapping a Discipline by Competency

Project Overview

Roadmapping of the musculoskeletal content in UCSF’s curriculum allows one to identify content that educates students in musculoskeletal competencies. In addition it offers students the opportunity to track the progress of their education in specific medical disciplines. The AAMC’s “Report VII Contemporary Issues in Medicine: Musculoskeletal Medicine Education” guidelines identifies such projects as a necessary first step in bettering curriculum and addressing fragmentation and repetitive instruction. It aims to inform students when they are receiving musculoskeletal medicine instruction so that they begin to recognize and associate musculoskeletal conceptual threads between disciplines.

Creation of a Competency Organized Roadmap for the musculoskeletal curriculum will demonstrate the existence of a musculoskeletal curriculum at work in UCSF, and allow faculty to evaluate the UCSF curriculum by using the roadmap to illustrate that UCSF meets the AAMC guidelines for a musculoskeletal curriculum. The Map also demonstrates that UCSF’s musculoskeletal curriculum instructs students on the six core competencies valued by UCSF ECCC. (We organize our curriculum by six criterion of competency- Patient Care, Medical Knowledge, Practice-Based Learning & Improvement, Interpersonal & Communication Skills, Professionalism, Systems-Based Practice).

Ideally, this project will serve UCSF in the future in three identified ways. Firstly, it can be a tool to ensure that essential competencies are preserved during the transition to the 3+1 curriculum. Secondly, the “cookbook “ should be used to make generating competency roadmaps for future disciplines more efficient. Finally, this project can be used by the ECCC as a tool to advocate, expand, evaluate as they continue to develop UCSF’s core educational competencies.

Methods:
Generating the Musculoskeletal Curriculum Roadmap:

- I searched Illios and Curmit using pertinent MeSH terms to determine lectures, small groups, labs, and large group presentation that teach musculoskeletal education.
- I searched through 1st and 2nd year curricular year calendar and accompanied syllabus for musculoskeletal content.
- I interviewed course directors and theme directors in an effort to better develop new ways visually display the musculoskeletal curriculum so that it will be used by faculty. In addition, I evaluated the data presented by students via our cross block project in an attempt to develop a better template used by students.
Evaluating course objectives that serve UCSF School of Medicine competencies:

- For the lectures, small groups, labs and large groups selected for the Musculoskeletal Roadmap, I subdivided all objectives presented in these curricular elements into UCSF’s Six Core Competencies and into the AAMC’s Guidelines for Curricular Competencies.
- I adapted the current template for roadmaps to display both course content and core competencies and mapped the Musculoskeletal Curricular Roadmap.
- When the project was completed, I drafted a cookbook to assist future generations who are doing projects of this kind in order to assist the legacy of the project.
- I presented my project as consultation for the ECCC concerning UCSF School of Medicine Competencies.

Project Outcomes:

The Musculoskeletal Curriculum/Competency maps have been uploaded to the CLE under “Curricular Roadmaps and Resources” - https://moodle.ucsf.edu/course/view.php?id=482. The projects document history, final products, instructions for future work, and “cook book” have been posted online on Mahara within my UCSF Portfolio - https://portfolio.ucsf.edu/view/view.php?id=438.

I received feedback on the content throughout the summer from my advisor Dr. Calvin Chou, feedback on design and interactivity from Christian Burke, Tracy Fulton and Dr Helen Loeser. Importantly, I received lots of feedback from my Ambassador small group as well as from the larger group during my mid-point presentation, mid-point portfolio project, final presentation, final portfolio project and presentation before the ECCC. The feedback from the large group helped me to focus on the aspects of the project that would make it user-friendly to the widest available audience while still benefiting curricular development.
Nutrition Curriculum Interactive Roadmap

Project Overview
In the United States, escalating rates of overweight and obesity are a major public health problem. For example, a recent study from the CDC reveals that the health cost of obesity might amount to as much as $147 billion annually. Moreover, extra weight increases risk for health problems such as type 2 diabetes, coronary artery disease, hypertension, cancer, and osteoarthritis. Unsurprisingly, US public health goals for 2010 call for increasing rates of physician counseling about nutrition and exercise and medical schools are placing more emphasis on nutrition in their curricula. Even the USMLE Steps 1 and 2 include a nutrition subscore on score reports.

UCSF recognizes nutrition as one of the core components to its curriculum and even includes a core set of nutrition lectures. However, the remaining nutrition-related material is very interwoven and student evaluations reveal difficulty in recognizing nutrition as a core theme. In addition, students worry that they are not learning enough information.

The goal of this curriculum ambassador project was to: Map the UCSF nutrition curriculum against the National Nutrition Academic Award (NAA) Guidelines.

By utilizing a national set of guidelines, this project avoided having to subjectively decide what qualifies under the umbrella term “nutrition.” The NAA was established by the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK). Twenty-one U.S. medical schools were given five-year grants to support nutrition education programs for medical students, medical residents, and clinical faculty. The nutrition educators at these schools developed the Nutrition Curriculum Guide for Training Physicians, which includes specific knowledge objectives for medical students in 23 different content areas.

Methods
- **Needs Assessment:** Searched literature to assess the status of medical school nutrition curricula at national level. Consulted with Dr. Andrea Garber, the steward of UCSF’s nutrition curriculum, and used student evaluations to identify a need for a comprehensive map to help assess the current state of the UCSF nutrition curriculum and facilitate its transition into the new 3+1 curriculum.
- **Guidelines Search:** Considered various sources to use in order to define umbrella term “nutrition.” Decided on NAA.
- **ILIOS Search:** Identified keywords in NAA knowledge objectives and searched ILIOS to identify syllabus sections where keywords appeared in vocabulary, as
MeSH terms (Medical Subject Headings), or objectives. Assessed search results and refined as needed.

- **Clerkship Poll**: Used poll from clerkship directors to identify where nutrition is taught in the clinical years.
- **Display of Results**: Created a summary table to show where and how NAA objectives are addressed in the UCSF curriculum (lecture, SG, ILM).

Project Outcome

The outcome of this project is a nutrition theme map, represented as a table, which catalogues existing material and can be used to identify gaps or overlap in UCSF’s curriculum. It will help to inform the new 3+1 curriculum by making sure that current material gets carried over, gaps are filled, and overlap is minimized. Moreover, it has helped to identify opportunities to increase nutrition teaching in the clinical core.

Of the 146 knowledge objectives for medical students listed in the NAA guidelines, 137 are covered in the current UCSF curriculum. 134 appeared in Essential Core lectures, 36 in small groups, and 13 in independent learning modules. While most of the topics appear in the Essential Core, very little is covered in the Clinical Core. Only 4 of the clerkships contain any nutrition-related objectives or didactic material.

Overall, this project reveals that UCSF is meeting the majority of national medical nutrition education guidelines, mostly in the Essential Core. However, this map also revealed the very diffuse nature of the subject: nutrition-related material appears in 159 separate lectures, small groups, and independent learning modules. In the future, a tool such as a “nutrition handbook” might help guide students to identify nutrition as a theme and consolidate their knowledge in the subject.

In the future, a more qualitative assessment of this project should be done in order to assess how well the NAA objectives are fulfilled by UCSF’s curriculum. In addition, student evaluations, USMLE nutrition subscores, exam scores, and online self-assessments can be used to gauge how well students are learning the material.
Peer-Led Small Groups in the Essential Core

Purpose
We created a series of Essential Core small groups in which faculty facilitators will not be present, and an accompanying curriculum to introduce peer-peer facilitation strategies. The project aims both to develop student competencies in communication domains and to pilot a strategy to improve teaching efficiency in the Essential Core. Evaluation will be focused on program integration into other parts of the curriculum.

Background
In the UCSF SOM, the preclinical Essential Core makes extensive use of small group learning for basic science and clinical material. Currently, faculty experts facilitate these groups. However, course administrators report difficulty in basic science faculty recruitment, leading to inconsistent faculty quality and limitations on expanded use of small groups in the curriculum. Student evaluations reflect this challenge. In parallel, there are currently few non-clinical opportunities for student development of Interpersonal & Communication Skills and Practice-Based Learning and Improvement relating to leadership of a team. These factors support a pilot of non-faculty, peer-facilitated small groups during the first year. UCSF has successfully implemented near-peer teaching in the Medical Scholars Program, and direct peer-to-peer teaching has been used at other institutions in the settings of PBL and the anatomy lab.

Methods
We wrote 3 small group sessions and a peer facilitation curriculum in consult with faculty stakeholders. The 5.5 hours of small group cover physiology and biochemistry and are integrated with new online physiology learning modules. The content questions proceed in a step-wise approach using clinical examples and targeting consolidation of knowledge. In addition to long-form questions, multiple choice questions are used to confirm student learning. These Student Test And Response (STAR) questions are discussed as a group, answer choices are indicated on a "scratch-off" lotto-style card, and students receive immediate feedback regarding the correct answer choice. Full explanations of correct and incorrect answer choices for each STAR question are provided online after the group is completed.

The peer-facilitation curriculum was developed following a review of prior publications pertaining to peer oriented small group learning techniques and consultation with 11 UCSF small group education experts. We then created a one-hour large group presentation on peer-facilitation and a 30-minute small-group debriefing. These sessions
help students: identify strategies for self-facilitation, discuss optimal group process, and outline personal contributions to group learning.

Evaluation Plan
Our evaluation strategy aims to improve program implementation and ensure applicability to other courses. Evaluation will ascertain student satisfaction with content learning and group format. Strategies include eValue questions, a stand-alone survey, a focus group, analysis of STAR answer card data, and analysis of Audience Response System data from the peer-facilitation introductory lecture.

Dissemination
Results of the project will be reported on to the Essential Core Course Committee and to the Essential Core Steering Committee as part of the M&N block review. We will likely submit an abstract to Medical Education Day and will consider post-evaluation submission to Really Good Stuff.

Reflective Critique
During the drafting process, feedback on content and scope was solicited from course and theme directors. We met with stakeholders and experts in small-group structure and process, as well as receiving feedback from the Curriculum Ambassadors at the beginning and near completion of the project. This student feedback helped reinforce the need for STAR questions as content support during the groups.
Development of the UCSF Portfolio

Project Overview
UCSF faculty and administrators have been collaborating for several years to create a system for evaluating students beyond their test scores in an effort to develop more dynamic students, ultimately leading to more dynamic physicians. To guide students, six core competencies have been developed that lay out benchmarks for students to meet at specific points in their medical education careers. Unfortunately, many students are still unaware of the competencies and how these competencies can help shape their education at UCSF. To increase awareness of the importance of keeping up with the competencies an online portfolio system has been implemented for the incoming class of 2013.

Initially the aim of my project was two-fold. During the first half of the summer I aimed to create an online resource pulling the various UCSF resource websites into one all encompassing resource. The second half of the summer would be dedicated to rolling out the portfolio system at UCSF.

Due to a variety of technical complications, learning curves, and new ideas being implemented with the portfolio system, I was behind my initial timeline at the midpoint of the summer. The new ideas caused me to constantly reevaluate both projects, causing me to finally put my resource project on the back burner in order to focus on getting the portfolio system up and running.

The final product resulted in a variety of examples for first years to use, including portfolio presentation examples, an online module, and a presentation during orientation week explaining the portfolio system. A minor achievement for the resource page was the development of a residency/subspecialties algorithm for student to use to educate themselves about future career paths.

Methods
1. Needs Assessment: Various advising groups, including curriculum, tech, and college advisors were consulted to determine their vision of what the portfolio system will be.
2. Project Management: Dr. Miller and Jesse Friedman were consistently consulted in order to determine how I should create the needed resources and on what timeline they should be completed in. Also, Kevin Souza was important in keeping me up to speed on the portfolio developments.
3. Module Building: Articulate Engage software was used to create an online flash driven module for the Step-by-Step portfolio guide.
4. **Portfolio Presentation Examples:** Core competencies were assessed by Dr. Miller and myself to determine what a first year would be required to present during their summative review. A generic system including cover letter, artifacts, meeting notes, follow up, and comments was created to provide a roadmap for future students to use. Final examples were created using my portfolio account and shared across the system for future student use.

Skills and Resources
This project required me to further my skills in time management, project development (i.e. story boarding), education theory, and computer technical skills. Having to utilize resources in different departments allowed me to learn how the different departments function and how interdepartmental communications occur. The contacts I made regarding the competencies, curriculum, and technical departments were invaluable to my learning and progressing with this project.

Project Outcomes
The final outcome of this project included:

- A web-based module that will be used by first years to set up and use the portfolio system.
- A presentation to first year medical students explaining the portfolio system and how it will help them meet their presentation goals.
- Several portfolio presentation examples that students can use as a resource when they create their summative portfolio presentation for their advisors.
- A residency/subspecialty algorithm was created as a resource for students to use in an effort to help guide professional development.

Due to many of the portfolio examples being located in my portfolio account and the portfolio system currently still evolving, I expect to continue refining this project over the course of my career at UCSF. Furthermore, I would like to continue to build a consolidated resource page for students to use.
Longitudinal Interprofessional Education Curriculum for First-Year Health Professional Students

Purpose:
The purpose of this project is to develop and implement a required longitudinal interprofessional education curriculum for first-year students from UCSF’s schools of Dentistry, Medicine, Nursing, Pharmacy, and Physical Therapy.

The curriculum consists of four parts delivered over the course of the first academic year:

1) *Interprofessional small groups*: Students are assigned to interprofessional groups (9-10 students per group) with whom they will communicate throughout the year, both online (via discussion boards) and in person.

2) *Interprofessional Education Day Part 1 (September 30, 2009)*: This annual event was instituted in 2006. It includes a series of skits, speeches, and small group discussion questions designed to highlight the importance of interprofessional communication and collaboration.

3) *Interprofessional Education Day Part 2 (January 25, 2010)*: This is a new event during which students will work together in their small groups on a video-based patient case (the case of "Mr. Quintero").

4) *Interprofessional social events*: 3-4 social events will be scheduled throughout the year.

Goals of this project are to foster communication and understanding between healthcare professional students, to enhance knowledge of other healthcare professions, and to provide students with strategies to promote positive interprofessional relationships in the future.

Background:
As a campus dedicated entirely to the health sciences, UCSF is poised to be a leader and innovator in interdisciplinary education. The first priority listed in the official UCSF Strategic Plan calls for “fostering innovation and collaboration”, which includes a commitment to ensuring that “students and trainees are immersed in a culture that embraces interdisciplinary, interprofessional and transdisciplinary educational programs”. The call for interprofessional education has also been issued by the Institute of Medicine, who in their 2003 report recommended that, “All health professionals should be educated to deliver patient-centered care as members of a interdisciplinary team” and presented extensive evidence that effective teamwork and communication between health professionals improves patient care and safety.
UCSF has already taken steps towards promoting interprofessional education – notably the implementation of Interprofessional Education Day [Part 1] beginning in 2006. This new longitudinal curriculum will expand upon the themes introduced on Interprofessional Education Day, and will provide all first-year students with the opportunity to form meaningful connections with their colleagues in other schools. This curriculum will bring UCSF closer to its goal of making interprofessional education an important and consistent part of all schools’ curricula.

Other health science schools, the majority in Canada and Britain, have implemented similar interprofessional education programs. A few US health schools have recently begun to embrace interprofessional education, notably the University of Arizona and the University of Minnesota.

Methods:
- Performed a literature search on past and current practices in interprofessional education in the health sciences.
- Met with representatives of the UCSF Interprofessional Education Task Force (including faculty from all schools) to develop the details of the curriculum.
- Identified the video-based case of “Mr. Quintero” and met with the original creators of the case (Dr. Carrie Chen, Dr. Sharon Youmans, Dr. Susan Hyde) to discuss the use of this case in our new curriculum.
- Gained the support of all 5 programs for making the curriculum mandatory for all first-year students.
- Assigned all first year students to small interprofessional groups (9-10 students per group.)
- Developed an Interprofessional Education course website on the CLE, which houses all of the information related to the interprofessional curriculum, including the small group discussion boards.
- Enrolled all new students in the CLE course.
- Developed the “pre/post” survey tool that will be used to evaluate changes in student attitudes towards interprofessional education.
- Met with the organizers of Interprofessional Day Part 1 to adjust the event to incorporate the new interprofessional small groups.
- Collaborated with the ASUC and the Student Activity Center to plan interprofessional social events.
- Developed the general dissemination plan for this project.

Evaluation Plan:

“Pre/Post” Survey: Evaluation of attitudes towards interprofessional education

Students will complete an anonymous survey at the beginning and end of the first academic year, and again at the beginning of the second academic year. The survey will assess the students’ attitudes towards interprofessional education and perceptions of
their role in the healthcare team. The survey uses two validated tools, the Readiness for Interprofessional Learning Scale (RIPLS) and the Interdisciplinary Education Perception Scale (IEPS). Changes in attitudes will be tracked over time. In addition, attitudes of students from the entering class of 2009 will be compared to attitudes of students from the entering class of 2008 (who will not participate in the full longitudinal interprofessional curriculum).

Curricular Evaluations:
Students will complete confidential curricular evaluations at the end of Interprofessional Education Days Part 1 and Part 2, and a program evaluation at the conclusion of the academic year. In addition attendance at these events (as well as the social events) will be analyzed.

Dissemination:
The dissemination plan for this project includes:
- “Interprofessional Education” CLE webpage (now up and running)
- Western Group on Education Affairs (WGEA) -- Abstract, Conference
- “Really Good Stuff” (Medical Education) – Abstract
- MedEdPortal – “Mr. Quintero” case and evaluation results
- Manuscript – description of the entire longitudinal curriculum, outcomes

Reflective Critique:
I have met individually with more than 20 faculty and staff members from all schools to solicit feedback on this new curriculum. I have also interviewed and surveyed (formally and informally) students from all schools. During the development process, the content, structure, length and scope of the curriculum changed many times, based on the feedback I received. As the curriculum is implemented this year, student feedback will be gathered at several points throughout the year (See “Evaluation Plan”) and this data will be used to improve the curriculum in future years.
Construction of a Radiology Roadmap:
Documentation and Analysis of the Radiology Curriculum in the Essential Core

Purpose
Create a roadmap of Radiology curriculum in the Essential Core and analyze the curriculum for inefficiencies, unplanned redundancies, and gaps in coverage. Use findings and faculty and student feedback to improve the Radiology curriculum at UCSF.

Background
Radiology was identified as a priority area for improvement in the Essential Core. Radiology content is scattered over organs-based blocks in UCSF’s integrated curriculum. As of now, there is no central oversight evaluating all radiology teaching to undergraduates in the Essential Core. Roadmaps are the standard curricular management tool for integrated themes and disciplines and they are a first step in designing a robust process to respond to feedback and keep pace with an ever-changing curriculum.

Methods
The current UCSF radiology curriculum was documented by performing ILIOS searches for radiology objectives and sessions. The curriculum was compared to a national radiology curriculum and Dartmouth medical school’s radiology curriculum based on internal documents provided by school representatives. We interviewed second and third year medical students as well as eight of eight Essential Core course directors and eight of eight core clerkship directors to elicit feedback on what an “ideal” Radiology curriculum should include.

Results
Analysis of the UCSF curriculum revealed a number of small inefficiencies that have been annotated for improvement by a future radiology steward. Comparison to other curricula confirmed that UCSF spends an appropriate amount of time on radiology during the preclinical years. However comparison also revealed a gap in coverage: UCSF does not include an introduction to basic radiology modalities. Both students and clerkship directors expressed a desire to learn a framework for reading chest x-ray during the preclinical years. Two computer modules were created to address these content areas.
Evaluation Plan
Radiology faculty and a newly formed radiology education committee should track student eValue comments on radiology sessions over time. Students completing the created modules will be asked to answer questions regarding usefulness of the modules.

Dissemination
Roadmap and modules will be made available to students and faculty on iRocket.

Reflective Critique
Two clinical faculty members edited modules for content and ease of use. Student feedback on modules will be elicited in the future and guide potential modification. The utility of the roadmap and quality of recommendations for faculty can be assessed by feedback from Essential Core radiology teaching faculty.
Establishing Clinical & Translational Research in the Medical Curriculum

Introduction

Similar to many human endeavors, our way of conceptualizing and organizing the vast landscape of biomedical sciences and medical practice is resurfaced as our knowledge base evolves. As our understanding and capabilities change, disciplines may be integrated together, new ones established, and sometimes old themes lose importance and fall to the wayside. It is critical that our curriculum takes part of this continuing conversation by using a similar framework and language.

Over the two decades, the discipline of Clinical and Translational Research (CTR) has developed into a dominant framework for the advancement of the medical sciences. This new focus emphasizes the importance of linking basic science not only to new clinical therapies, but also from clinical therapies to better clinical outcomes. The National Institutes of Health (NIH), the Association of American Medical Colleges (AAMC), and the Liaison Committee on Medical Education (LCME) have all taken great strides to emphasize CTR with respect to research, medical education and medical education standards, respectively. Until now, our medical curriculum has not explicitly engaged by using the same terminology to organize and track curriculum in the Essential Core.

My project’s central purpose is to establish Clinical and Translational Research as a discipline within the School of Medicine’s curriculum. To accomplish this, my project has two main components:

1. To identify, map and analyze existing CTR content within the curriculum
2. To strengthen the existing curriculum through the development of two modules: “An Intro to Clinical and Translational Research” and “Cervical Cancer: A Case Study in CTR.”

Methods

In order to identify and map current CTR content in the medical curriculum, I worked through a several stage process, which included:

- Researching the similar efforts made by other medical schools by using the AAMC’s Curriculum and Information Tool (CurrMIT) and MedEdPortal, as well as PubMed literature searches.
- Using literature searches and faculty input to determine definitions of Clinical and Translational Research to guide the curriculum survey
- Surveying and tracking curricular content using these definitions through course materials, session objectives and Medical Subject Heading (MeSH) terms.
• Organizing and analyzing the results using a systematic categorization of curricular material type and discipline subcategory.

To develop new curricular modules, the following methods were employed:
• Creating thorough background literature searches
• Identifying the existing course content on cervical cancer, both in the M3 block and in the Clinical Core during Intersession
• Subsequently discussing with faculty to determine the module’s content
• Storyboarding to design the structure of the modules
• Using several programs to design and assemble the modules, including Adobe Illustrator, Adobe Dreamweaver, and Keynote.

Project Outcomes
Four final products have been created:
1. A Clinical and Translational Research Roadmap that follows UCSF’s roadmap template
2. A report to accompany the roadmap that analyzes the various characteristics about CTR content (including block distribution, material type, sub-categorization, and relations to session objectives and competencies)
3. An introductory module introducing Clinical and Translational Research to be used either in a classroom setting or online.
4. An online module presenting Cervical Cancer (for the M3 course block) that highlights the role of CTR in treatment development and practice change.

Additionally, this project has initiated a discussion on how to integrate this new framework into the pre-existing themes and disciplines that already track the medical curriculum, as well as CTR-related resources that already exist at UCSF (such as the Pathways to Discovery program and the Clinical and Translational Sciences Institute). This will continue to develop among faculty members and students as well to maximize the benefit of this project, our curriculum and our university’s great resources.
Law and the Health Sciences: Development of a Inter-Professional Seminar

Project Overview

UCSF/Hastings Consortium on Law, Science and Health Policy is a recently developed collaboration between UCSF and UC Hastings College of the Law. The Consortium anticipates building on existing collaborations and generating new inter-professional projects within three realms: research, service and education. Within the educational component, the Consortium will support courses and advanced degrees for UCSF and Hastings students interested in learning health policy and law. There will be a one year Masters in Legal Studies (MLS) for UCSF students and a one year Master of Laws (LLM) for Hastings Students. An integral part of both programs will be a seminar course exploring topics at the intersection of law and health science.

Our project was to work with Hastings Professor David Faigman in developing this seminar course for both UCSF and Hastings students, which will be offered during the Fall and Winter quarters. The course will consist of thirteen two-hour sessions with each session consisting of a presentation by a recognized expert in the field and one hour of seminar discussion facilitated by Professor Faigman. Our specific role was to identify and approach appropriate faculty at both UCSF and Hastings about involvement in the course and construct a reader of introductory and foundational texts for each session’s topic.

We divided up the sessions between the two of us and also worked closely together to regularly brainstorm each session. We also met with our advisor, Professor Faigman, on a weekly basis to present our progress, receive feedback, discuss any questions, and navigate any blockages. Additionally, we made two formal presentation of our progress to our Curriculum Ambassador peers during the weekly CA workshops.

Methods

- We reviewed the medical and legal education literature for reports of similar collaborations. Working from previous work we brainstormed ways to present material that would be both accessible and engaging to an audience of both health science students and law students.
- Working from a draft syllabus for the course written by Professor Faigman, we brainstormed novel ways to present each session’s topic in a focused manner.
- We identified, contacted, and met with faculty from both schools whose work bridged law and health science.
• We preformed extensive primary and secondary literature searches and elicited input from faculty in order to identify introductory and fundamental texts for each session’s topic. We pulled readings from the lay press, the academic legal literature and the academic medical literature. We assembled 30-50 pages of reading for every week. This reading will provide grounding for the seminar discussion component of each week.

• We contacted the academic deans from all the UCSF professional and graduate schools to insure that the course would appeal to the whole range of UCSF students. Ultimately the course and masters programs will be part of UCSF’s Health and Society Pathway of the interdisciplinary Pathways to Discovery program.

Resources

In the process of identifying appropriate readings we found secondary sources and expert faculty to be the most fruitful. Additionally, we used several academic journal databases such as Lexis-Nexis, PubMed, and Academic Search Complete. Also, we were shameless in discussing the project with as many different advisors and faculty in order to identify the best faculty at either school to address each session’s topic. We were also not bashful about contacting senior faculty, and generally everyone we contacted was very generous with their time and receptive to contributing to the course.

The Curriculum Ambassador program, workshops, advisors and, most importantly, our fellow ambassadors were crucial resources.

Project Outcome

By the end of the summer we had successfully identified and met with potential speakers for all sessions. We had also successfully constructed a refined course reader providing appropriate grounding literature for each session for both potential UCSF and Hastings students. In addition we sketched out what the two interdisciplinary masters programs would look like.

The course will be taught this coming Fall and Winter quarters. Clearly Professor Faigman’s experience in teaching the course, as well as feedback from the students and guest speakers, will inform how the course develops in future iterations. Although we doubt that our reader and speaker schedule will go untouched from year to year, hopefully the work we did will provide a solid foundation to build and refine the course moving forward.